Digitimer
Research and Clinical Instruments Manufacturer & Supplier
Acquisition InterfacesNational Instruments USB-6341-BNCHEKA LIH 8+8 Data Acquisition SystemAmplifiersNeuroLog SystemD360 8-Ch. EP/EEG/EMGD360R 4 Channel Isolated Research Amplifier/FilterD440 2/4 Ch. EMG/EPHEKA EPC10 Patch ClampHEKA EPC10 2/3/4 Ch. Patch ClampHEKA EPC800 Patch ClampAnti-vibration SystemsThorLabs Science DesksNarishige ITS Anti-vibrationNarishige Double MagnetNarishige SBP-2 BaseplateCell InjectorsPLI-100A Pico-injectorPLI-10 Pico-injectorNarishige IM-11-2Narishige IMS-20Narishige IM-21Narishige IM-400Injection Accessories
Incubators & ChambersAutomate Perfusion ChambersMedical Systems MicroincubatorsSSD Brain Slice KeepersSSD Brain Slice ChambersIontophoretic DevicesD380 Dye MarkerMains Noise EliminatorsHumBug Noise EliminatorD400 Mains Noise EliminatorManipulatorsElectrophysiology System ManipulatorsInjection System ManipulatorsStereotaxic Manipulators“YOU” Compact ManipulatorsChronic ManipulatorsAccessoriesMicroscope Adaptors (Ephys)Microscope Adaptors (Injection)
MEA SystemsMED64 – BasicMED64 – Quad IIMED64 – AllegroMED64 – Plex 4/8MED64 – PrestoMED64 – Mobius SoftwareMED64 ProbesPerfusion EquipmentPerfusion SystemsPerfusion AccessoriesPipette FabricationMicropipette PullersMicroforges & MicrogrindersReplacement PartsCapillary GlassProgrammers & TimersDG2A Train Delay GeneratorNeuroLog System
Signal GeneratorsTG315 Function GeneratorSoftwareQtracW Threshold TrackingAutoMate EasycodeHEKA Chartmaster SoftwareHEKA Patchmaster SoftwareHEKA Fitmaster SoftwareStimulatorsDS2A Constant VoltageDS3 Constant CurrentDS4 Biphasic Constant CurrentDS5 Bipolar Constant CurrentDS7A/DS7AH Constant CurrentDS7R Constant Current ResearchDS8R Biphasic ResearchD121-11 Mounting FrameD185 Transcranial MultiPulseD330 MultiStim SystemNL800A Current Stimulus Isolator
A/D Interface ModulesNL201 – Spike TriggerNL601 – Pulse IntegratorAmplifier ModulesNL100AK – HeadstageNL100RK (NL100AKS & NL100C)NL102G – DC PreamplifierNL104A – AC PreamplifierNL106 – AC/DC AmplifierNL108A – Pressure AmplifierNL109 – Bridge AmplifierNL120S – Audio AmplifierNL820A – 4-Ch. IsolatorNL844 – 4-Ch. AC PreamplifierAnalogue ModulesNL254 – RatemeterNL506 – Analogue SwitchNL703 – EMG Integrator
Digital ModulesNL405 – Width/DelayNL501 – Logic GateNL505 – Flip FlopNL603 – CounterNL730 – Pulse ShiftFilter & Conditioner ModulesNL125/6 – Band-Pass FilterNL134/5/6 – 4-Ch. Low Pass FiltersNL143 – 3-Ch. Difference AmplifierNL144 – 4-Ch. High Pass FilterNL530 – Signal ConditionerNL540 – Inverting Attenuator (Alt. Gain)Generator ModulesNL301 – Pulse GeneratorNL304 – Period GeneratorNL412 – Pulse
NeuroLog AccessoriesAccessory KitsAdaptors & Adaptor CablesSockets (for cable mounting)Sockets (for panel mounting)Plugs (for cable mounting)Extension CablesCablesElectrode HoldersMiscellaneous AccessoriesNeuroLog System CasesNL900D – NeuroLog System CaseNL905 – Compact NeuroLog System Case
Pressure Transducers & AccelerometersPressure TransducersForce TransducersAccelerometersStimulator ModulesNL510 – Pulse BufferNL512 – Biphasic BufferNL800A Constant Current Stimulus Isolator Application NotesSignal AmplificationTriggering & Pulse GenerationSignal Conditioning Filtering & ProcessingElectrical Stimulation
Isolated Amplifiers for EMG/EEG/EP D440 2/4-Ch. EMG AmplifierD360 8-Ch. Patient Amplifier D360R 4-Ch. Research AmplifierAmplifier Accessories D175 Electrode Impedance Meter D179 Performance Checker D360 Audio Interface D360 USB to Serial Adaptor D177 Bio-Feedback Unit
Peripheral Stimulators DS5 Isolated Bipolar Constant Current Stimulator DS7A & DS7AH HV Constant Current Stimulator DS7R HV Constant Current Research Stimulator DS8R Biphasic Constant Current Stimulator
Transcranial Cortical StimulatorsD185 MultiPulse Cortical Electrical StimulatorStimulator AccessoriesD188 Remote Electrode SelectorElectrode Connection HeadboxesTrigger CablesElectrode HandlesMiscellaneous Items
Neurodiagnostic AccessoriesIntraoperative Neuromonitoring (IONM) Electroecephalography (EEG) Electromyography (EMG)Nerve Conduction Study (NCS) Evoked Potential (EP)Axelgaard Stimulation ElectrodesTouch Proof Plugs Adaptors & Electrode Linkers
Cath SecureCATH-SECURE – OriginalCATH-SECURE – ExtendedCATH-SECURE PlusCATH-SECURE – Dual TabCATH-SECURE For KidsNG SECURE
PessariesPessary Ring Sizing KitsCerclage Pessary (Perforated)Cerclage Pessary (Non Perforated)Ring PessaryThick Ring PessaryCube Pessary (Perforated)Cube Pessary (Non-Perforated)Vaginal DilatorUrethra PessaryBowl PessaryUrethra Bowl PessarySieve Bowl PessaryHodge PessaryClub PessaryTandem Pessary (Perforated)Tandem Pessary (Non-Perforated)
Urodynamic ConsumablesUrodynamics CathetersPump Infusion SetsTransducer Pressure DomesFemale Voiding AdaptorDuckbill ValvesSetguards3-Way Taps
Shop Basket
£3,000.00 – £4,200.00 exc. VAT
Manufacturer's Net List Price
The Digitimer D440 Isolated EMG Amplifier is a a portable and standalone, low noise solution for human EMG studies, specifically those related to nerve excitability. The D440 features an amplification range of x100 to x20k. The gain, filter and mode settings for individual channels are adjusted using our own “virtual front panel” software or other software via a COM interface. The D440 is available in two versions, the D440-2 – a 2 Channel Isolated Amplifier – and the D440-4 – a 4 Channel Isolated Amplifier.
AC and DC Operating Modes
The D440 is designed to operate in AC and DC differential modes and includes a manually activated or externally gated de-block function, which can be useful for minimising the effects of magnetic stimulation artifacts.
Compatible with Standard Electrode Connectors
Electrodes are connected to the front panel via 1.5mm DIN 42 802 or standard 5-pole DIN connectors.
Designed for Human Research Applications
The D440 has been designed to meet international medical device design standards, however, it is NOT a medical device and its use is limited to human research studies only.
QtracW – Threshold Tracking & Nerve Excitability
The D440 has been designed to appeal to users of our DS5 Bipolar Constant Current Stimulator, who employ the DS5 and QtracW software to research human nerve excitability. This application requires a very low noise amplifier, which outputs an analog signal and can be controlled directly by the QtracW data acquisition software. These requirements are fully satisfied by the Digitimer D440 Isolated Amplifier.
Analogue Outputs for DAQ Hardware Compatibility
Each D440 amplifier is supplied with a signal output cable (D440-OL-xx, D connector to multiple BNC), electrode connection cable (D-440-IL, 1.2m long with 3x 1.5mm DIN42802 sockets for electrode connection and 270 degree 5-pin DIN plug for amplifier connection) and USB cable for connection to the host computer.
Product Information
D440 Isolated Amplifier
D440 Control Software
Colomer-Poveda, D., Hortobágyi, T., Keller, M., Romero-Arenas, S., & Márquez, G. (2020). Training intensity-dependent increases in corticospinal but not intracortical excitability after acute strength training. Scandinavian Journal of Medicine and Science in Sports, 30(4), 652–661. https://doi.org/10.1111/sms.13608
Davies, J. L. (2020). Using transcranial magnetic stimulation to map the cortical representation of lower-limb muscles. Clinical Neurophysiology Practice. Elsevier. https://doi.org/10.1016/j.cnp.2020.04.001
Ghasemian-Shirvan, E., Farnad, L., Mosayebi-Samani, M., Verstraelen, S., Meesen, R. L. J., Kuo, M. F., & Nitsche, M. A. (2020). Age-related differences of motor cortex plasticity in adults: A transcranial direct current stimulation study. Brain Stimulation. Elsevier. https://doi.org/10.1016/j.brs.2020.09.004
Higashihara, M., Menon, P., van den Bos, M., Pavey, N., & Vucic, S. (2020). Reproducibility of motor unit number index and MScanFit motor unit number estimation across intrinsic hand muscles. Muscle and Nerve, 62(2), 192–200. https://doi.org/10.1002/mus.26839
Higashihara, M., Van den Bos, M. A. J., Menon, P., Kiernan, M. C., & Vucic, S. (2020). Interneuronal networks mediate cortical inhibition and facilitation. Clinical Neurophysiology, 131(5), 1000–1010. https://doi.org/10.1016/j.clinph.2020.02.012
Hossain, M. J., Kendig, M. D., Wild, B. M., Issar, T., Krishnan, A. V., Morris, M. J., & Arnold, R. (2020). Evidence of altered peripheral nerve function in a rodent model of diet-induced prediabetes. Biomedicines, 8(9). https://doi.org/10.3390/biomedicines8090313
Kiernan, M. C., Bostock, H., Park, S. B., Kaji, R., Krarup, C., Krishnan, A. V., … Burke, D. (2020). Measurement of axonal excitability: Consensus guidelines. Clinical Neurophysiology. Elsevier. https://doi.org/10.1016/j.clinph.2019.07.023
Mosayebi Samani, M., Agboada, D., Kuo, M. F., & Nitsche, M. A. (2020). Probing the relevance of repeated cathodal transcranial direct current stimulation over the primary motor cortex for prolongation of after-effects. Journal of Physiology. Wiley Online Library. https://doi.org/10.1113/JP278857
Mosayebi-Samani, M., Melo, L., Agboada, D., Nitsche, M. A., & Kuo, M. F. (2020). Ca2+ channel dynamics explain the nonlinear neuroplasticity induction by cathodal transcranial direct current stimulation over the primary motor cortex. European Neuropsychopharmacology, 38, 63–72. https://doi.org/10.1016/j.euroneuro.2020.07.011
Witt, A., Fuglsang-Frederiksen, A., Finnerup, N. B., Kasch, H., & Tankisi, H. (2020). Detecting peripheral motor nervous system involvement in chronic spinal cord injury using two novel methods: MScanFit MUNE and muscle velocity recovery cycles. Clinical Neurophysiology, 131(10), 2383–2392. https://doi.org/10.1016/j.clinph.2020.06.032
Witt, A., Bostock, H., Z’graggen, W. J., Tan, S. V., Kristensen, A. G., Kristensen, R. S., … Tankisi, H. (2020). Muscle velocity recovery cycles to examine muscle membrane properties. Journal of Visualized Experiments. jove.com. https://doi.org/10.3791/60788
Alaydin, H. C., Vuralli, D., Keceli, Y., Can, E., Cengiz, B., & Bolay, H. (2019). Reduced Short-Latency Afferent Inhibition Indicates Impaired Sensorimotor Integrity During Migraine Attacks. Headache, 59(6), 906–914. https://doi.org/10.1111/head.13554
Caetano, A., Pereira, M., & de Carvalho, M. (2019). A 15-minute session of direct current stimulation does not produce lasting changes in axonal excitability. Neurophysiologie Clinique, 49(4), 277–282. https://doi.org/10.1016/j.neucli.2019.05.067
Caetano, A., Pereira, P., Pereira, M., & de Carvalho, M. (2019). Modulation of sensory nerve fiber excitability by transcutaneous cathodal direct current stimulation. Neurophysiologie Clinique, 49(5), 385–390. https://doi.org/10.1016/j.neucli.2019.10.001
Colomer-Poveda, D., Romero-Arenas, S., Lundbye-Jensen, J., Hortobágyi, T., & Márquez, G. (2019). Contraction intensity-dependent variations in the responses to brain and corticospinal tract stimulation after a single session of resistance training in men. Journal of Applied Physiology, 127(4), 1128–1139. https://doi.org/10.1152/japplphysiol.01106.2018
Czesnik, D., Howells, J., Bartl, M., Veiz, E., Ketzler, R., Kemmet, O., … Paulus, W. (2019). I h contributes to increased motoneuron excitability in restless legs syndrome. Journal of Physiology, 597(2), 599–609. https://doi.org/10.1113/JP275341
Kristensen, A. G., Bostock, H., Finnerup, N. B., Andersen, H., Jensen, T. S., Gylfadottir, S., … Tankisi, H. (2019). Detection of early motor involvement in diabetic polyneuropathy using a novel MUNE method – MScanFit MUNE. Clinical Neurophysiology, 130(10), 1981–1987. https://doi.org/10.1016/j.clinph.2019.08.003
Kristensen, R. S., Bostock, H., Tan, S. V., Witt, A., Fuglsang-Frederiksen, A., Qerama, E., … Tankisi, H. (2019). MScanFit motor unit number estimation (MScan)and muscle velocity recovery cycle recordings in amyotrophic lateral sclerosis patients. Clinical Neurophysiology, 130(8), 1280–1288. https://doi.org/10.1016/j.clinph.2019.04.713
Mosayebi Samani, M., Agboada, D., Jamil, A., Kuo, M. F., & Nitsche, M. A. (2019). Titrating the neuroplastic effects of cathodal transcranial direct current stimulation (tDCS) over the primary motor cortex. Cortex, 119, 350–361. https://doi.org/10.1016/j.cortex.2019.04.016
Jacobsen, A. B., Kristensen, R. S., Witt, A., Kristensen, A. G., Duez, L., Beniczky, S., … Tankisi, H. (2018). The utility of motor unit number estimation methods versus quantitative motor unit potential analysis in diagnosis of ALS. Clinical Neurophysiology, 129(3), 646–653. https://doi.org/10.1016/j.clinph.2018.01.002
Jacobsen, A. B., Bostock, H., & Tankisi, H. (2018). Cmap scan mune (Mscan)-a novel motor unit number estimation (mune) method. Journal of Visualized Experiments. jove.com. https://doi.org/10.3791/56805
Makker, P. G. S., Matamala, J. M., Park, S. B., Lees, J. G., Kiernan, M. C., Burke, D., … Howells, J. (2018). A unified model of the excitability of mouse sensory and motor axons. Journal of the Peripheral Nervous System, 23(3), 159–173. https://doi.org/10.1111/jns.12278
Van Den Bos, M. A. J., Higashihara, M., Geevasinga, N., Menon, P., Kiernan, M. C., & Vucic, S. (2018). Imbalance of cortical facilitatory and inhibitory circuits underlies hyperexcitability in ALS. Neurology, 91(18), E1669–E1676. https://doi.org/10.1212/WNL.0000000000006438
Van den Bos, M. A. J., Menon, P., Howells, J., Geevasinga, N., Kiernan, M. C., & Vucic, S. (2018). Physiological processes underlying short interval intracortical facilitation in the human motor cortex. Frontiers in Neuroscience. frontiersin.org. https://doi.org/10.3389/fnins.2018.00240
Jacobsen, A. B., Bostock, H., Fuglsang-Frederiksen, A., Duez, L., Beniczky, S., Møller, A. T., … Tankisi, H. (2017). Reproducibility, and sensitivity to motor unit loss in amyotrophic lateral sclerosis, of a novel MUNE method: MScanFit MUNE. Clinical Neurophysiology, 128(7), 1380–1388. https://doi.org/10.1016/j.clinph.2017.03.045
Supplied
Please leave this field empty.
D440 2 Channel Isolated Amplifier, D440 4 Channel Isolated Amplifier